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Abstract
We have studied intrinsic point defects in magnesium silicide, Mg2Si, by density-functional
theory. Evaluating the formation energies of point defects, we show that n-type electric
conductivity of Mg2Si originates from formations of positively charged Mg ions at interstitial
sites, regardless of the chemical composition in crystal growth. Moreover, we have calculated
the Born effective charge tensors and the valence charge density distribution. They show Mg2Si
is an ionic crystal composed of Mg2+ and Si4− which have very different ionic radii, 0.6 Å and
2.1 Å, respectively. We have concluded that the unfavorable antisite defect, MgSi, is due to the
dissimilar ionic radii.

1. Introduction

Magnesium silicide, Mg2Si, has attracted lots of interest as an
environmentally friendly thermoelectric semiconductor [1–4]
as it consists of elements that are non-toxic and abundant in
nature. The Mg–Si phase diagram shows that Mg2Si is the only
compound in this system and it melts at 1358 K. Therefore
crystal growth from the melt is possible, but a considerable
amount of Mg tends to evaporate from the surface [5, 6]
because the boiling temperature (1363 K)is close to the melting
temperature and the vapor pressure of Mg is high. Quite
naturally, an Mg vacancy, VMg, would be considered as a
major defect in the crystal. In general, vacancies of cations
tend to act as acceptors and to generate holes in the valence
bands; semiconductors with such vacancies would exhibit p-
type conductivities.

Contrary to such an expectation, undoped Mg2Si exhibits
n-type conductivity [1, 7, 8] under any chemical conditions
in crystal growth, whereas an isomorphic compound, Mg2Ge,
reveals p-type (n-type) conductivity under Ge-rich (Mg-rich)
conditions [9].

The discrepancy should be solved by detailed quantitative
investigation of intrinsic defect formations in Mg2Si. Aside
from complex defects, the candidates for donor-like defects
are positively charged, such as Mg at an interstitial site, Mgi,
antisite-Mg, MgSi or an anion vacancy, VSi. However, no
studies have elucidated the origin of the n-type conductivity
of undoped Mg2Si [10].

A recent first-principles calculation scheme has high
reliability for predicting defect formations taking into account

crystal growth conditions [11, 12]. The scheme does not
deal with the dynamics of defect generation processes, but
supposes thermodynamic equilibrium conditions. Sufficiently
high mobilities of the atoms in the crystal are required so
that defect formations equilibrate thermodynamically at the
temperatures of interest. Fortunately, Mg2Si can be considered
as a material which satisfies the requirement because it can be
fabricated owing to the high mobility of Mg [13, 14].

The aim of the present work is to elucidate the origin
of the persistent n-type conductivity of Mg2Si by means of
first-principles analysis. We studied intrinsic point defect
formations in Mg2Si by density-functional theory. Evaluating
the formation energies of all kinds of point defects in variously
charged states, we show that the positively charged Mgi is the
most energetically stable defect under both Si-rich and Mg-rich
conditions. It acts as an donor, Mgi → Mgi

q+ + qe−, this is
consistent with the persistent n-type conductivities in earlier
experimental results [1, 7, 8].

This paper is organized as follows: in section 2 we make
a brief review of the calculation method; in section 3 we
present the numerical results and elucidate the origin of the
n-type conductivity and the bonding character of Mg2Si; our
conclusions are given in section 4.

2. Calculation method

The calculated results we present throughout this work were
produced by our first-principles electronic structure calculation
program [15] in a pseudopotential scheme with plane-wave
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basis functions. It provides electronic structures within
density-functional theory (DFT) [16]. We employed dual-
space Gaussian pseudopotentials (norm conserving) and an
exchange–correlation functional (local-density approximation)
with the parameters tabulated in reference [17].

Magnesium silicide belongs to the antifluorite structural
type with an fcc cubic lattice, and the space group is Fm3̄m.
The unit-cell structure consists of Si ions occupying four lattice
points (4a) and Mg ions occupying eight tetrahedral sites (8c).
In addition, the structure has four equivalent interstitial sites
(4b).

2.1. Defect formation energies and carrier concentrations

We determined the optimized lattice constant for the perfect
crystal and kept it in all point defect calculations to eliminate
spurious stresses [12]. We employed a periodic supercell
system, though the defect formation energy should be the
energy required to generate a single isolated defect in
an infinite perfect crystal under a relevant crystal growth
condition. If volume relaxation processes are carried out in
defect calculations, the total energies would correspond to
the ones for the bulk systems containing ordered arrays of
defects at high concentrations. That is why the optimized
lattice constant for the perfect crystal is employed in all defect
calculations [12].

To evaluate defect formation energies, we adopted a well-
established formalism [11, 12], which gives us the following
formation energy, Ed

f , for a defect d, as a function of the
chemical potentials of the constituent elements, μMg, μSi, and
an electron Fermi energy, εF, under a relevant crystal growth
condition,

Ed
f (μMg, μSi, εF) = Ed

tot(qd) − nd
MgμMg − nd

SiμSi + qdεF, (1)

where nd
Mg and nd

Si are the numbers of Mg and Si atoms,
respectively, in the supercell with the defect d; qd is the charge
state of the defect. The first term on the right-hand side of
equation (1) is the total energy of the supercell system with the
defect in charge state, qd.

Chemical potentials, μMg and μSi, depend on the chemical
compositions under which the Mg2Si crystal is grown.
In thermodynamically equilibrium conditions, they are not
independent since both species are in equilibrium with bulk
Mg2Si;

μMg2Si = 2μMg + μSi

= 2μbulk
Mg + μbulk

Si − �H Mg2Si
f , (2)

where μMg2Si is the total energy for the perfect crystal by
means of the chemical formula. The chemical potentials for
the elemental materials, μbulk

Mg and μbulk
Si , are the total energies

per atom in Mg (hcp) and Si (diamond) pure bulk crystals,
respectively, and �H Mg2Si

f is the heat of formation.
Since Mg2Si is the only compound in the Mg–Si system,

no segregations, except for Mg2Si, should be obtained if the
boundary relations, μMg < μbulk

Mg and μSi < μbulk
Si , are

satisfied. To sum up these conditions, we have the following
expressions [18, 19],

μmin
Mg = μbulk

Mg − 1
2�H Mg2Si

f < μMg < μbulk
Mg , (3a)

μmin
Si = μbulk

Si − �H Mg2Si
f < μSi < μbulk

Si . (3b)

From equation (2), one free parameter characterizes the
chemical composition in the crystal growth. For example, μSi

and μMg under Si-rich (Mg-rich) conditions are μbulk
Si (μmin

Si )
and μmin

Mg (μbulk
Mg ), respectively.

The Fermi energy is conventionally measured with respect
to the valence band maximum (VBM) of the perfect supercell,
εVBM. In this work, we adopted [20]

εVBM = Eperf
tot (q = 0) − Eperf

tot (q = +1), (4)

where Eperf
tot (q) is the total energy of the perfect supercell in

a charge state q . We employed uniform background charge
distributions in the calculations for charged states to keep the
charge neutrality over the supercells.

Because one-electron energy levels are displaced in
calculations of periodic supercells with defects, the levels
should be referenced back to the corresponding ones for the
perfect crystal by an amount, �V ,

εF = εVBM + �V + ε. (5)

The shift �V can be obtained as the difference between the
average electrostatic potential in the bulk-like region, which
is the most distant plane from the defect in the supercell, and
the corresponding one in the perfect supercell [21–24]. The
conduction band minimum, εCBM, is defined by

εCBM = Eperf
tot (q = −1) − Eperf

tot (q = 0). (6)

The formation energy in equation (1), the difference
between the total energy and the sum of the chemical potentials
of constituent atoms and excess electrons, can be regarded
as the energy required to generate the defect under a crystal
growth condition.

In the limit of dilute concentrations, it is assumed that the
defect concentration, Cd, obeys the following distribution,

Cd(εF, T ) = Nd exp

(
− Ed

f

kBT

)
, (7)

where Nd is the concentration of the sublattice site relevant
to the defect d. The Boltzmann’s constant and the absolute
temperature are denoted by kB and T , respectively. The Fermi
energy and defect concentrations are determined by the charge
neutrality condition [25],∑

d

qdCd(εF, T ) = n(εF, T ) − p(εF, T ), (8)

where the carrier densities, n and p, are the thermodynamically
equilibrium electron and hole concentrations, which are
expressed by

n(εF, T ) =
∑

εn>εCBM

f (εn, εF, T )Dεn , (9a)

p(εF, T ) =
∑

εn<εVBM

[1 − f (εn, εF, T )]Dεn , (9b)

where f (εn, εF, T ) is the Fermi–Dirac distribution function
and Dεn is the number of states with a one-electron energy,
εn , in the perfect supercell.
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Figure 1. Formation energies for vacancy defects, VMg and VSi, under (a) Si-rich and (b) Mg-rich conditions. The charge states with the
lowest formation energies are depicted. The origin of Fermi energy is the corrected valence band maximum, εVBM + �V .

2.2. Born effective charge tensors

In order to examine the chemical bonding character in Mg2Si,
we calculate the Born effective charge tensors, Zi j , by a
conventional method [26],

Zα
i j = ∂ Pi

∂τα
j

∼ �Pi

�τα
j

, (10)

where P is the polarization vector and �τα is the αth atom
displacement-vector from the ideal coordinate. The subscripts
stand for the Cartesian components. The Brillouin-zone
integrations for the polarization calculations were carried out
with regularly spaced 12×12×12 points in the reciprocal unit-
cell for the fcc primitive cell with one chemical formula. The
differentiation in equation (10) is replaced by a finite difference
scheme. We found at least |�τα| ∼ 0.01 Å provided a well
converged Zα

i j . The effective charge tensors calculated with
these conditions satisfied a sum rule [27–29],

∑
α

Zα
i j = 0, (11)

to a precision of 0.01 per primitive cell in units of elementary
charge, e.

3. Results and discussion

We obtained the following convergence properties by
employing a cutoff energy for the wavefunction expansion,
30Hr. For the perfect unit-cell, we obtained the optimized
lattice constant, 6.235 Å, which is in good agreement with the
earlier theoretical result [30] and it is slightly (1.8%) smaller
than the experimental results, 6.35 Å [31, 32]. The obtained
value of �H Mg2Si

f , which is defined in equation (2), is 0.528 eV,
this is close to the previous GGA result of 0.52 eV [33].

As the reference perfect supercell, we employed a system,
which contained 96 atoms (nMg = 64 and nSi = 32). The
Brillouin-zone integrations in the total energy calculations for
supercells were carried out with a regular mesh of 2 × 2 × 2
points in the reciprocal unit-cell for the supercell.

We obtained the conduction band minimum, εCBM,
0.57 eV above the valence band maximum, εVBM. The
converged band gap energy, 0.19 eV, was obtained when

we employed a sufficiently dense mesh for Brillouin-zone
integrations and this is in good agreement with the earlier
theoretical result [30]. The discrepancy is due to our coarse
mesh points. Nevertheless, the calculated formation energies
for major defects stayed almost unchanged (<0.01 eV) when
we adopted a denser mesh (4×4×4). We made no corrections
for the band gap because the magnitude of the band gap energy
is still under investigation [34, 35].

3.1. Defect formation energies

We carried out self-consistent total energy calculations for
defect supercells in variously charged states (from −4 to +4
in units of e). The inner coordinates of all atoms within a
sphere of radius 6 Å around a relevant defect were relaxed until
the maximum residual forces were less than 10−3 eV Å

−1
with

no imposed symmetries. The calculations with the relaxation-
cutoff radius gave sufficiently converged total energies in
reference to all-atom-relaxation results (<0.02 eV). We also
confirm that the spin degree of freedom provides insignificant
contributions (<0.01 eV) to the total energies for odd electron
systems, such as Mgi

+, Mgi
3+, V−

Mg etc.
Two kinds of point vacancy defects, VMg and VSi, were

examined. In figure 1, the lowest formation energies for VMg

and VSi are shown. A negatively charged defect, VMg, has
low formation energies for the Si-rich condition as expected.
It generates holes in the valence bands and should act as an
acceptor. The Mg vacancy, VMg, is more favorable than VSi

except for a p-type environment (low Fermi energy region)
and especially with a Si-rich condition. Moreover, VMg has
lower formation energies under a Si-rich condition than under
a Mg-rich condition. That is quite reasonable because a Si-rich
condition is also referred to as a Mg-poor condition.

In the Mg2Si crystal structure, only one type of interstitial
site (4b) is possible and it is surrounded by eight Mg ions, so
next two kinds of interstitial point defects, Mgi and Sii, were
examined. The lowest formation energies for Mgi and Sii, are
shown in figure 2. The present calculations indicate that Mgi

is energetically more favorable than Sii over the whole band
gap. It is reasonable to assume that the formation of Mgi is
more favorable under a Mg-rich condition than under a Si-rich
condition. The positively charged defect, Mgi, gives electrons
in the conduction bands and should act as a donor.

3
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Figure 2. Formation energies for defects at the 4b interstitial site, Mgi and Sii, under (a) Si-rich and (b) Mg-rich conditions. The charge states
with the lowest formation energies are depicted. The origin of Fermi energy is εVBM + �V .

Figure 3. Formation energies for antisite defects, MgSi and SiMg, under (a) Si-rich and (b) Mg-rich conditions. The charge states with the
lowest formation energies are depicted. The origin of Fermi energy is εVBM + �V .

Figure 4. Carrier concentrations as functions of crystal growth temperature under (a) Si-rich and (b) Mg-rich conditions. The term, ‘net
n-type’, stands for the difference between n- and p-type carrier concentrations.

The lowest formation energies for antisite defects, MgSi

and SiMg, are shown in figure 3. In particular, MgSi

is energetically unfavorable and that will be discussed in
section 3.3 in terms of the ionic radii.

3.2. Carrier and defect concentrations

We calculated defect and carrier concentrations with Fermi
energies by means of the charge neutrality condition,
equation (8). Figure 4 shows the obtained carrier
concentrations as functions of crystal growth temperature. The

n-type carrier concentration slightly exceeds the p-type one
under both off-stoichiometric conditions. In addition, the
effective mass for an electron is smaller than the one for a
hole [36], the result from the band structure of Mg2Si. These
facts indicate that Mg2Si always exhibits n-type conductivity
whether it is fabricated under Si-rich or Mg-rich conditions.
Moreover, the net n-type carrier concentration under a Mg-rich
condition is larger than the one under a Si-rich condition. The
Fermi energies appear in figure 5. The Fermi energy for the
Mg-rich condition is higher than that for the Si-rich condition.
This is consistent with the above carrier concentration result.

4



J. Phys.: Condens. Matter 21 (2009) 205801 A Kato et al

Figure 5. Fermi energies as functions of crystal growth temperature
under Si-rich and Mg-rich conditions.

Figure 6 illustrates the major defect concentrations, which
are the sum of the concentrations of the respective defects in
all charge states. The concentrations of other types of defects
are more than two orders of magnitude lower.

Figures 3 and 5 indicate that the major charge state of SiMg

is neutral, so SiMg is less important with respect to the carrier
generation mechanism. The concentration of Mgi, which acts
as a donor, is higher than the one for VMg, which acts as an
acceptor, and the difference is larger under a Mg-rich condition
than under a Si-rich one. That is why the net n-type carrier
concentration for the Mg-rich condition is higher than the one
for the Si-rich condition.

Figures 2 and 5 indicate that the major charge state of Mgi

is nominal, Mg2+
i , under any chemical composition. Then the

source of the persistent n-type conductivity of Mg2Si is the
formation of the positively divalent interstitial Mg defect as an
donor; Mgi → Mg2+

i + 2e−.
We examined the validity of our supercell size by

calculating the formation energies for major defects (Mg2+
i ,

V2−
Mg) with a larger supercell (324 atoms). The differences

in the corresponding formation energies were 0.05 eV for
Mg2+

i and 0.02 eV for V2−
Mg, respectively. Our conclusions

stay unchanged against increasing supercell size because the
differences show little change from figures 1 and 2.

Moreover we verified the reliability of the method we
used here by applying it to pure bulk silicon (the reference

perfect supercell contains 64 atoms). As the result of our
calculation, the net carrier concentration is quite low even at
high temperatures, e.g. 1.4 × 1013 cm−3, whereas n ∼ p ∼
6 × 1019 cm−3 at 1500 K. That is qualitatively reasonable
because a large compensation between n and p in pure bulk
silicon is widely accepted. However it should be noted that
carrier concentrations, n and p ∼ 1.4 × 1016 cm−3 at 500 K,
are overestimated when compared to an experimental result,
1014−15 cm−3 at 500 K [37]. Rigorous quantitative checks
should be done with larger supercells and with a band gap
correction.

3.3. Born effective charge tensors and bonding
characterization

We examined the bonding character of Mg2Si in terms of
Born effective charge tensors. Generally, Born effective charge
tensors in ionic crystals are almost diagonal and the values
of the diagonal elements are close to their nominal valence
numbers. In contrast, covalent bondings produce off-diagonal
elements and the values of diagonal elements deviate far from
their nominal ones [28, 29].

The calculated Born effective charge tensors for Mg and
Si in a Mg2Si perfect crystal are as follows,

Z Mg =
⎛
⎝ +1.84 0.00 0.00

0.00 +1.84 0.00
0.00 0.00 +1.84

⎞
⎠ , (12a)

Z Si =
⎛
⎝−3.67 0.00 0.00

0.00 −3.67 0.00
0.00 0.00 −3.67

⎞
⎠ . (12b)

Both effective charge tensors are almost diagonal and the
magnitudes of the diagonal elements are close (∼92%) to the
nominal valence numbers of the ions. This suggests that the
bonding character in Mg2Si is ionic, thus their ionic radii are
expected to be well-defined.

The total valence charge density distribution for the
perfect crystal is shown in figure 7. It shows close similarity to
the earlier theoretical result [30] and exhibits fairly the ionic
charge density distribution, as expected from the calculated
Born effective charge tensors. Furthermore, the distribution

Figure 6. Concentrations of major defects, Mgi and VMg, as functions of crystal growth temperature under (a) Si-rich and (b) Mg-rich
conditions.

5
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Figure 7. Total valence charge density distribution of (110) plane of
Mg2Si. The symbols, ‘Mg’ and ‘Si’ denote the position of the center
of respective ions and ‘4b’ stands for the interstitial site.

indicates a significant difference in ionic radius between Mg2+
and Si4−. We estimated the ionic radius for Mg2+, rMg2+ ,
at 0.6 Å and that for Si4−, rSi4− , at 2.1 Å, by regarding the
boundary between Mg2+ and Si4− as the isodensity surface
extending across both ions. The ionic radius, rMg2+ is in good
agreement with the widely-accepted empirical value, 0.58 Å
[38], as the radius of the divalent Mg cation at a tetrahedral
site. The ionic radius, rSi4− , is about three times larger than
rMg2+ . In general, antisite defects have high formation energies
if the mutual ionic radii are markedly dissimilar [39]. That
agrees with our result in section 3.1, i.e., the antisite defect,
MgSi is energetically unfavorable.

In contrast, SiMg, the other type of antisite defect, reveals
a relatively high defect concentration in a Si-rich condition
(figure 6). Figures 3 and 5 indicate the major charge state of
SiMg is neutral, Si0

Mg. This suggests that the Si ion at a Mg-site

is a divalent cation, Si2+, in Si0
Mg. In general, a cation has a

smaller ionic radius than the anions of the same element. Then
the difference between the ionic radii should be reduced. That
is why SiMg reveals a higher defect concentration than MgSi. It
should be noted that SiMg gives a minor contribution to carrier
generation because the major charge state is neutral.

4. Conclusions

We have investigated the intrinsic point defect formations in
Mg2Si by density-functional theory and have elucidated that
the donor-like Mgi is a major defect and the persistent n-type
conductivity originates from excess n-type carriers from Mgi,
whatever chemical composition the crystal is grown under. The
net n-type carrier concentration is much higher under a Mg-
rich condition than under a Si-rich condition. These results are
consistent with experimental results; Mg2Si exhibits persistent
n-type conductivities [1, 7] and the crystal which is grown
under a Mg-rich condition exhibits higher electric conductivity
than the one grown under a Si-rich condition [8].

The antisite defect, MgSi, requires higher formation
energies compared with major defects, Mgi. Thus MgSi is a

minority (less than 1015 cm−3) in Mg2Si. The Born effective
charge tensors exhibit the ionic bonding between positively
divalent Mg and negatively quadrivalent Si. Furthermore, the
valence charge density distribution shows that their ionic radii
are quite different (0.6 Å for Mg2+ and 2.1 Å for Si4−). It is
reasonable to assume that highly charged anions (Si4−) have
large ionic radii and that the antisite defects, MgSi, relevant to
the ions with dissimilar radii, have high formation energies.

Though we assume thermodynamic equilibrium condi-
tions in crystal growth processes instead of dealing with ex-
plicit dynamics, high mobilities of Mg in Mg2Si, which have
been reported in earlier experiments [13, 14], allow defect for-
mations associated with Mg to reach thermodynamic equilib-
rium in crystal growth. Therefore, it can be said that our results
make sense because Mgi is identified as the major defect in our
calculations.
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